An algorithmic version of the blow-up lemma

نویسندگان

  • János Komlós
  • Gábor N. Sárközy
  • Endre Szemerédi
چکیده

Recently we developed a new method in graph theory based on the regularity lemma. The method is applied to find certain spanning subgraphs in dense graphs. The other main general tool of the method, besides the regularity lemma, is the so-called blow-up Ž w Ž .x lemma Komlos, Sarkozy, and Szemeredi Combinatorica, 17, 109]123 1997 . This lemma ́ ́ ̈ ́ helps to find bounded degree spanning subgraphs in «-regular graphs. Our original proof of the lemma is not algorithmic, it applies probabilistic methods. In this paper we provide an algorithmic version of the blow-up lemma. The desired subgraph, for an n-vertex graph, can Ž Ž .. Ž . Ž 2.376. be found in time O nM n , where M n sO n is the time needed to multiply two n by n matrices with 0, 1 entires over the integers. We show that the algorithm can be parallelized and implemented in NC5. Q 1998 John Wiley & Sons, Inc. Random Struct. Alg., 12, 297]312, 1998 Correspondence to: Gabor N. Sarkozy *Part of this paper was written while Sarkozy was visiting MSRI Berkeley, as part of the Combinatorics Program. Research at MSRI is supported in part by NSF grant DMS-9022140. Q 1998 John Wiley & Sons, Inc. CCC 1042-9832r98r030297-16 297 ́ ́ KOMLOS, SARKOZY, AND SZEMEREDI 298

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D ec 1 99 6 AN ALGORITHMIC VERSION OF THE BLOW - UP LEMMA

Recently we have developed a new method in graph theory based on the Regularity Lemma. The method is applied to find certain spanning subgraphs in dense graphs. The other main general tool of the method, beside the Regularity Lemma, is the so-called Blow-up Lemma ([24]). This lemma helps to find bounded degree spanning subgraphs in ε-regular graphs. Our original proof of the lemma is not algori...

متن کامل

A quantitative version of the Blow-up Lemma

In this paper we give a quantitative version of the Blow-up Lemma.

متن کامل

An approximate blow-up lemma for sparse pseudorandom graphs

We state a sparse approximate version of the blow-up lemma, showing that regular partitions in sufficiently pseudorandom graphs behave almost like complete partite graphs for embedding graphs with maximum degree ∆. We show that (p, γ)-jumbled graphs, with γ = o(pmax(2∆,∆+3/2)n), are “sufficiently pseudorandom”. The approach extends to random graphs Gn,p with p ( log n n )1/∆.

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1998